Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.

نویسندگان

  • Zhipeng Li
  • Quanqin Zhao
  • Weiliu Fan
  • Jinhua Zhan
چکیده

Porous SnO(2) nanospheres with high surface areas have been synthesized through a solvothermal method in the absence of any templates. The structure and morphology of the resultant products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption-desorption technique. The as-prepared SnO(2) porous nanospheres with the diameters ranging from 90-150 nm are composed of small nanocrystals with average sizes of less than 10 nm. Results demonstrated that the formation of porous SnO(2) nanospheres is ascribed to etching the center part of the nanospheres. It was found that hydrochloric acid and NaClO played important roles in determining the final morphologies of the porous SnO(2) nanospheres. The gas sensing properties of the as-prepared porous SnO(2) nanospheres were investigated. By the comparative gas sensing tests, the porous SnO(2) nanospheres exhibited a superior gas sensing performance toward ppb level 2-chloroethanol and formaldehyde vapor, implying promising applications in detecting toxic volatile organic compounds (VOCs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of volatile organic compounds (VOCs) using SnO2 gas-sensor array and artificial neural network

This paper presents design and development of an electronic nose system based on tin oxide gas-sensors array and artificial neural network (ANN) for the identification of some of the volatile organic compounds (VOCs) relevant to environmental monitoring such as propane-2-ol, methanol, acetone, ethyl methyl ketone, hexane, benzene and xylene. An array of SnO2-based thick-film gas sensors doped w...

متن کامل

Morphology Control of Tin Oxide Nanostructures and Sensing Performances for Acetylene Detection

Morphology Control plays an important role in gas sensing properties of metal oxide semiconductor based gas sensors. In this study, various morphologies of SnO2 nanostructures including nanobulks, nanospheres, nanorods, and nanowires were successfully synthesized via a simple hydrothermal method assisted with different surfactants. X-ray powder diffraction and scanning electron microscopy were ...

متن کامل

Performance analysis of Zinc oxide based alcohol sensors

Sensor technology is one of the most significant technology for the future with a constantly growing number of applications, ranging from toxic gas detection, manufacturing process monitoring to medical diagnosis and health monitoring. Among the different existing sensor technologies, the semiconductor sensors are most attractive for their high sensitivity, small size and light-weight construct...

متن کامل

Gas sensing using porous materials for automotive applications.

Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scen...

متن کامل

Hybrid Photonic Cavity with Metal-Organic Framework Coatings for the Ultra-Sensitive Detection of Volatile Organic Compounds with High Immunity to Humidity

Detection of volatile organic compounds (VOCs) at parts-per-billion (ppb) level is one of the most challenging tasks for miniature gas sensors because of the high requirement on sensitivity and the possible interference from moisture. Herein, for the first time, we present a novel platform based on a hybrid photonic cavity with metal-organic framework (MOF) coatings for VOCs detection. We have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2011